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In the present work, the optimum thickness of a plane wall with a heat-shielding coating that ensures
the minimum steady-state temperature of the most heated point of the wall is determined. On the
unprotected side the wall is cooled by a medium whose temperature and heat-transfer coefficient are
constant, whereas on the side of the coating the wall is exposed to a heat flux with an intensity of
the Gaussian type in the pulse-periodic regime.

In numerous investigations of the mathematical theory of heat conduction [1–4], of special interest
are the problems of predicting the thermal state of structures and developing their efficient thermal protection
[5–7], which is associated with optimization and estimation of the effective values of thermophysical and
geometric parameters for multilayer regions [8]. As the simplest example of a multilayer region, one can
consider a plane isotropic wall with a heat-shielding coating which is a layer of a heat-insulating material
deposited on a thermally insulated surface and intended for decreasing conductive, convective, and radiative
heat exchanges on the surface. Heat insulations are classified using various principles [8, 9], while their com-
parative analysis is carried out by means of the "effective thermophysical characteristics of a heat-shielding
layer" [8, 9], which makes it possible to apply methods of mathematical simulation to calculating and opti-
mizing the coating. 

The correctness of selection of the parameters of a heat-shielding coating is substantially determined
by the space-time structure of the heat flux which affects the coating. In theoretical investigations, consider-
able attention is given to heat fluxes with intensities of the Gaussian-type in both steady-state [11–13] and
unsteady [14, 15] regimes of exposure. In particular, the use of the heat flux with Gaussian intensity allowed
one to solve the problem of determining the "optimum thickness of a cooled wall exposed to local heating"
[12].

In the present work, we consider a plane isotropic wall with a heat-shielding coating, whose unpro-
tected surface is cooled by a medium with a constant temperature Tc and a heat-transfer coefficient α, while
on the side of the coating the wall is exposed to a heat flux with an intensity of the Gaussian-type in a
pulse-periodic regime. The main aim of the investigations performed is to determine sufficient conditions of
existence of the optimum thickness of the plane isotropic wall with a coating, which can ensure the minimum
steady-state temperature of the most heated point of the wall, with subsequent determination of this optimum
thickness.

In conformity with the aim set and the principle of optimality formulated, we consider that the initial
temperature in the system wall–coating is equal to the temperature Tc of the cooling medium and use the
following mathematical model:
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 x=−ε

 = − K exp (− k2ρ2) ×

×  ∑ 
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
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where for any fixed values of Fo > 0 and x 2 (−ε; l) the function θm(x, ρ, Fo), m 2 {1, 2}, as the function
ρ, is the inverse transform of the Hankel integral transform of zero order [1];

θm = 
Tm − Tc

Tc
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
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q0z∗

λ2Tc

 .

By applying successively to Eq. (1) first the operator H0 of the Hankel direct integral transform of
zero order in ρ [1]

Um (x, p, Fo) = H0 [θm (x, ρ, Fo)] B ∫ 
0

∞

θm(x, ρ, Fo) J0 (pρ) ρdρ , (2)

 and then the operator L of the Laplace direct integral transform in Fo [1]

Vm (x, p, s) = L [Um (x, p, Fo)] � ∫ 
0

∞

exp (− s Fo) Um (x, p, Fo) d Fo (3)

 with the use of their properties and the known equality [16]

  ∫ 
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∞
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

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4k2



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we come to the following problem for a system of ordinary differential equations relative to the transforms
Vm(x, p, s), m 2 {1, 2}:
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∂x2  = 

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

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

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Solutions of Eqs. (4) and (5) can be represented in the form [1]

V1 (x, p, s) = c11 (p, s) exp (− x √ s + p2  ) + c12 (p, s) exp (x √ s + p2  ) ,   0 < x < l ; (9)
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
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
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


 ,   − ε < x < 0 , (10)

and must satisfy both the boundary conditions (6) and (7) and the conjugation conditions (8), thus leading to
a system of linear algebraic equations for finding the functionals cij(p, s), i, j � {1, 2}:

√ s + p2  



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
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
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 ;

c11 (p, s) + c12 (p, s) = c21 (p, s) + c22 (p, s) ;

√ s + p2  

c11 (p, s) − c12 (p, s)


 = Λ √sχ2 + p2  


c21 (p, s) − c22 (p, s)


 . (11)
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Solution of the problem of determination of the temperature field for the coated wall considered in
the integral transforms of Laplace (3) and Hankel (2) used is completed by definition of the functionals cij(p,
s), i, j 2 {1, 2}, that satisfy system (11), which follows immediately from equalities (9) and (10). But to
achieve the aim set, it is sufficient to know only the steady-state temperature of the most heated point of the
wall. Physically, it is quite obvious that in the notation of the mathematical model (1) this temperature is
represented by θ1(0, 0, ∞).

According to Eqs. (9) and (11), we have

V1 (0, p, s) = c11 (p, s) + c12 (p, s) =

= 



1 + 

√ s + p2  − Bi

√ s + p2  + Bi
 exp (− 2l √ s + p2  )




 c11 (p, s) ;
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ΛK

sk2  exp 



− 

p2

4k2 − ε √sχ2 + p2  



 ϕ−1 (p, s) 

1 − exp (− s Fo∗ )

1 − exp [− s (Fo∗  + ∆Fo∗ )]
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


1 − exp 




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


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
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


1 + 

√ s + p2  − Bi

√ s + p2  + Bi
 exp (− 2l √ s + p2  )




 + √ s + p2  



1

 + exp 



− 2ε √sχ2 + p2  



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

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 ×

× 


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1 − 
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 exp (− 2l √ s + p2  )




 ,

where V1(0, p, s) is the Laplace integral transform (3) for the function U1(0, p, Fo), i.e., U1(0, p, Fo) =
L−1[V1(0, p, s)]. Using the well-known limiting theorem of operational calculus [1], we find

U1 (0, p, ∞) =  lim
s→0

  sV1 (0, p, s) = 
ΛKFo∗

k2 (Fo∗  + ∆Fo∗ ) p
 exp 




− 

p2

4k2 − pε



 ψ−1 (p) ×

× 



1 + 

p − Bi

p + Bi
 exp (− 2lp)




 ;

(12)

ψ (p) = Λ [1 − exp (− 2εp)] 

1 + 

p − Bi
p + Bi

 exp (− 2lp)



 + [1 + exp (− 2εp)] 




1 − 

p − Bi
p + Bi

 exp (− 2lp)



 .

Thus, the unknown steady-state temperature of the most heated point of the wall considered is deter-
mined as

θ1 (0, 0, ∞) = H0
−1 [U1 (0, p, ∞)] ρ=0 = ∫ 

0

∞

U1 (0, p, ∞) pdp =

= 
ΛKFo∗

k2 (Fo∗  + ∆Fo∗ )
 ∫ 
0

∞

exp 



− 

p2

4k2 − pε



 ψ−1 (p) 




1 + 

p − Bi

p + Bi
 exp (− 2lp)




 dp ,

(13)
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where the functional ψ(p) is defined by equality (12). Here, Eqs. (13) and (12) yield the dependence of this
temperature on the parameters of the initial mathematical model (1), including the thickness l of the wall
considered and the thickness ε of its coating. Therefore, we set

θ (l, ε) = θ1 (0, 0, ∞) . (14)

As the physical substantiation of the existence of the optimum (in terms of the above-formulated
principle of optimality, which in this case coincides with the optimization criterion) thickness of the wall, we
can cite the reasoning from [12]: "With increase in the wall thickness l, two oppositely acting factors come
into force: the spread of heat from the central point and the increase in the thermal resistance to the transfer
of heat from the heated surface to a cooled surface. With a certain wall thickness the joint action of these
factors can lead to a minimum value of the temperature for the central point on the surface heated."

Having used equalities (12)–(14) and performing an immediate check, we ascertain that

∂θ (l, ε)
∂ε



 ε>0

 < 0 ,     ∃   lim
ε→∞

  
∂θ (l, ε)
∂ε

 = − 0 ,

i.e., with any fixed thickness of the wall the increase in the thickness of the coating leads to a monotonic
decrease in the sought temperature θ(l, ε). Thus, it is worthwhile to seek the condition of existence of the
optimum thickness of the wall with a fixed thickness of the coating. Therefore, the scale unit z∗  of the spatial
variables x and ρ in the mathematical model (1) is assumed to be equal to the fixed thickness of the coating
lcoat, i.e., it is taken that ε = 1. In this case, l is defined as the wall thickness-to-coating thickness ratio.

Differentiating the integral on the right-hand side of equality (13) with respect to the parameter l for
ε = 1 and taking into account equalities (12) and (14), we find the condition needed for the existence of the
local extremum:

k2 (Fo∗  + ∆Fo∗ )

4ΛKFo∗
   
∂θ (l, ε)

∂l



 ε=1

 =

= ∫ 
0

∞

exp 



− 

p2

4k2 − p



 [1 + exp (− 2p)] 

exp (− 2lp) (Bi2 − p2)
(p + Bi)2 ψ2 (p)

 pdp = 0 .

But since the physical considerations imply that

∃   lim
l→∞

  
∂θ (l, ε)

∂l



 ε=1

 = + 0 ,

for the minimum of the function θ(l, 1) to exist the following condition must be satisfied:

∃   lim
l→+0

  
∂θ (l, ε)

∂l



 ε=1

 < 0

or, which is the same,

J = ∫ 
0

∞

exp 



− 

p2

4k2 − p



 

[1 + exp (− 2p)] (Bi2 − p2) pdp



Λ [1 − exp (− 2p)] p + Bi [1 + exp (− 2p)]

2 < 0 . (15)
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Next, we suppose that

J1 = ∫ 
0

Bi

exp 



− 

p2

4k2 − p



 

[1 + exp (− 2p)] (Bi2 − p2) pdp



Λ [1 − exp (− 2p)] p + Bi [1 + exp (− 2p)]



2 , (16)

J2 = ∫ 
Bi

∞

exp 



− 

p2

4k2 − p



 

[1 + exp (− 2p)] (p2 − Bi2) pdp



Λ [1 − exp (− 2p)] p + Bi [1 + exp (− 2p)]



2 . (17)

In this case, according to equalities (16) and (17), we have the inequalities J1 > 0 and J2 > 0, while
condition (15) can be represented as follows: J1 < J2.

Thus, if J1
∗  > J1 is the upper limit for J1 and J2

∗  < J2 is the lower limit for J2, then the inequality

J1
∗  < J2

∗ (18)

prescribes a sufficient condition for the existence of the optimum thickness of the coated wall under consid-
eration. Here

J1 < ∫ 
0

Bi

exp 



− 

p2

4k2 − p



 
[1 + exp (− 2p)] (Bi2 − p2) pdp




Bi [1 + exp (− 2p)]



2  <

< 
1

Bi2
  ∫ 

0

Bi

exp 



− 

p2

4k2 − p



 (Bi2 − p2) pdp < 

1

Bi2
  ∫ 

0

Bi

exp (− p) (Bi2 − p2) pdp ,

J2 > ∫ 
Bi

∞

exp 



− 

p2

4k2 − p



 

(p2 − Bi2) pdp

[1 + exp (− 2p)] (Λp + Bi)2
 >

> 
1

2
  ∫ 
Bi

∞

exp 



− 

p2

4k2 − p



 
(p + Bi) p
(Λp + Bi)2

 (p − Bi) dp > 
1

(Λ + 1)2
 ∫ 
Bi

∞

exp 



− 

p2

4k2 − p



 (p − Bi) dp ,

and if we assume that

J1
∗  = 

1

Bi2
  ∫ 

0

Bi

exp (− p) (Bi2 − p2) pdp = (Bi)−2 


 (Bi2 − 6) + 2 (Bi2 + 3 Bi + 3) exp (− Bi)  ; (19)

J2
∗  = 

1

(Λ + 1)2
 ∫ 
Bi

∞

exp 



− 

p2

4k2 − p



 (p − Bi) dp =

= 
2k2 exp (k2)
(Λ + 1)2

 



exp 


− 


Bi
2k

 + k


 2



 − √π  



Bi
2k

 + k

 erfc 



Bi
2k

 + k





 ,

(20)

then the sufficient condition (18)–(20) is fully defined. It should be noted that for large values of x =
k + Bi ⁄ (2k) in calculating the limit J2

∗ , determined by equality (20), it is worthwhile to use the asymptotic
representation of the complementary Gauss error function [16]
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erfc (x) � 
exp (− x2)

x √π
 










1 +  ∑ 

k=1

∞

 (− 1)k (2k − 1) !!
(2x2)k










 .

In this case, with an accuracy to the second term in the asymptotic representation erfc (x) we have

J2
∗  C 

exp 



− Bi − 

Bi2

4k2





(Λ + 1)2 

1 + 

Bi

2k2




2 . (21)

To illustrate the theoretical results obtained, we assume that the material of the wall is titanium (λ1

= 15 W/(m⋅K)) [13]. Then, taking λ2 = 0.45 W/(m⋅K) for the heat-shielding coating [17], we obtain Λ = 0.03.
We note that for the selected value of the parameter Λ, the sufficient conditions (18)–(21) are satisfied, for
example, when k = 100 and Bi = 1 and 1.3, and they are not satisfied when k = 100 and Bi = 5. Therefore,
each indicated value of the vector of the parameters (Λ, k, Bi) must correspond to the optimum thickness of
the wall with a fixed thickness of the heat-shielding coating. This fact is confirmed by the results of compu-
tational experiments (Fig. 1, dependences 1, 2, and 4, respectively). For the convenience of representation of
graphic information, along the horizontal axis we plotted here the relative thickness l of the wall, while along
the vertical axis, we plotted δ = [k2(Fo∗  + ∆Fo∗ )/(KΛFo∗ )]θ(0, 0, ∞), i.e., the quantity that is proportional to
the steady-state temperature of the most heated point of the wall under consideration.

But since conditions (18)–(21) are sufficient, theoretically there can exist cases not satisfying these
conditions which, however, can ensure the existence of the optimum thickness of the wall (see Fig. 1, de-
pendence 3).

Fig. 1. Dependence of the dimensionless parameter δ on the relative
thickness l of the wall at different values of Biot (Bi) criterion and the
concentration coefficient k for a pulse-periodic heat flux with intensity of
the Gaussian type: 1) Bi = 1, k = 100; 2) 1.3 and 100; 3) 1 and 1; 4) 5
and 100.
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Thus, in conformity with the results of the computational experiments that are partially given in Fig.
1, we can assert that in the case of the existence of the optimum thickness of the coated wall considered, i.e.,
in the case of the existence of opt {l}, the increase in the value of Bi for a fixed k is accompanied by a
decrease in the value of opt {l} up to zero (see Fig. 1, dependences 1, 2, and 4). The decrease in the value
of k corresponding to the increase in the dispersion of the affecting flux is accompanied by a sharp increase
in the value of opt {l} for a fixed Bi (see Fig. 1, dependences 1 and 3). These arguments are "physically
transparent" and completely correspond to the fundamental propositions of the mathematical theory of heat
conduction [1, 2].

NOTATION

r and z, spatial variables; t, time; T, temperature; x = z ⁄ z∗  and ρ = r ⁄ z∗ , dimensionless spatial vari-
ables; Fo = a1t ⁄ (z∗ )2, Fourier number; Bi = αz∗  ⁄ λ1, Biot criterion; η(Fo), Heaviside function; z∗ , selected
scale unit; l1, wall thickness; l2, coating thickness; q0, intensity (density) of the heat flux; k∗ , λ, and a, coef-
ficients of concentration, thermal conductivity, and thermal diffusivity; α, heat-transfer coefficient. Subscripts:
1, wall; 2, coating; c, cooling medium.

REFERENCES

1. A. V. Luikov, Theory of Heat Conduction [in Russian], Moscow (1967).
2. E′ . M. Kartashov, Analytical Methods in the Theory of Heat Conduction of Solids [in Russian], Mos-

cow (1985).
3. E′ . M. Kartashov and V. E′ . Parton, Itogi Nauki Tekhniki, Ser. Mekh. Deform. Tverd. Tela (Moscow),

22, 55–127 (1991).
4. E′ . M. Kartashov, Inzh.-Fiz. Zh., 72, No. 5, 825–836 (1999).
5. V. S. Zarubin, Temperature Fields in the Structure of Aircraft [in Russian], Moscow (1965).
6. Yu. V. Polezhaev and F. B. Yurevich, Thermal Protection [in Russian], Moscow (1976).
7. I. G. Romanenkov and F. A. Levites, Fire Protection of Building Structures [in Russian], Moscow

(1991).
8. V. S. Zarubin, Calculation and Optimization of Thermal Insulation [in Russian], Moscow (1991).
9. S. M. Kats, High-Temperature Insulating Materials [in Russian], Moscow (1981).

10. G. N. Dul’nev and V. V. Novikov, Transport Processes in Inhomogeneous Media [in Russian], Lenin-
grad (1991).

11. N. N. Rykalin, A. A. Uglov, and N. N. Markov, Dokl. Akad. Nauk SSSR, 169, No. 3, 565–568 (1966).
12. V. S. Zarubin, Izv. Vyssh. Uchebn. Zaved., Mashinostroenie, No. 10, 18–21 (1970).
13. N. N. Rykalin, A. A. Uglov, and A. N. Kokora, Laser Treatment of Materials [in Russian], Moscow

(1975).
14. A. A. Uglov, I. Yu. Smurov, A. M. Lashin, and A. G. Gus’kov, Modeling of Thermophysical Proc-
esses of Pulsed Laser Action on Metals [in Russian], Moscow (1991).

15. V. P. Kozlov, Inzh.-Fiz. Zh., 54, No. 3, 484–493 (1988).
16. I. S. Gradshtein and I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Mos-

cow (1971).
17. Power Condensed Systems: Concise Encyclopedic Dictionary [in Russian], Moscow (1999).

1474


